Discovering Novelty in Sequential Patterns: application for analysis of microarray data on Alzheimer disease

نویسندگان

  • Sandra Bringay
  • Mathieu Roche
  • Maguelonne Teisseire
  • Pascal Poncelet
  • Ronza Abdel Rassoul
  • Jean-Michel Verdier
  • Gina Devau
چکیده

UNLABELLED Analyzing microarrays data is still a great challenge since existing methods produce huge amounts of useless results. We propose a new method called NoDisco for discovering novelties in gene sequences obtained by applying data-mining techniques to microarray data. METHOD We identify popular genes, which are often cited in the literature, and innovative genes, which are linked to the popular genes in the sequences but are not mentioned in the literature. We also identify popular and innovative sequences containing these genes. Biologists can thus select interesting sequences from the two sets and obtain the k-best documents. RESULTS We show the efficiency of this method by applying it on real data used to decipher the mechanisms underlying Alzheimer disease. CONCLUSION The first selection of sequences based on popularity and innovation help experts focus on relevant sequences while the top-k documents help them understand the sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

Discovering Novelty in Gene Data: From Sequential Patterns to Visualization

Data mining techniques allow users to discover novelty in huge amounts of data. Frequent pattern methods have proved to be efficient, but the extracted patterns are often too numerous and thus difficult to analyse by end-users. In this paper, we focus on sequential pattern mining and propose a new visualization system, which aims at helping end-users to analyse extracted knowledge and to highli...

متن کامل

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Long-term Iran's inflation analysis using varying coefficient model

Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studies in health technology and informatics

دوره 160 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010